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COMMENT 

Pointwise convergence of densities under iteration of Ulam and 
von Neumann's map 
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Institut fur Angewandte Mathematik, Universitat Zurich, Ramistrasse 74, CH-8001 Zurich, 
Switzerland 
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Abstract. The pointwise convergence of the probability densities induced from an initial 
density on (0, 1) under repeated iteration of the map x++4x(1 - x )  is established for a 
large class of initial densities. 

Letf, be a probability density function on [0, 11, and letf, denote the density on [0, 11 
induced fromf, by n applications of the map X- h(x)  := 4x( 1 - x). In Grosjean (1986) 
it is shown, using the results of Falk (1984) and Nandakumaran (1985), that f,(x) + 
{T[x( 1 - x ) ] ~ ' ~ } - '  for all x E (0, l ) ,  provided that the symmetric part fiy" of fo with 
respect to the point x = 4 belongs to the class 9 of functions having an expansion of 
the form ao+Z:nplanTn[l -8x(1 -x)] ,  in terms of the Chebyshev polynomials Tn of 
the first kind, for which Xfl3,lunl <CO. 

This implies, in particular, that fa"' must be continuous, but Grosjean conjectures 
that fn  converges even if fiy" has a number of jumps. It should also be noted that the 
class 9 does not contain the invariant density { v [ x ( l  -x)]"'}-'. In this comment, a 
very simple argument is used to prove that f, converges for a class of initial densities 
which includes the invariant density and those conjectured by Grosjean. 

Theorem. Suppose that the function go: x-[x(1 - ~ ) ] ' ' ~ f i ~ " ' ( x )  belongs to the space 
D[O, 11 of functions on [0, 11 which are right continuous and have left limits. Then 

lim sup (.rr[x(l -x)]'"f,(x) - 1 1  = 0. 
n-JC O < X < l  

In particular, 

Iimfn(x) ={T[x(I - x ) ] ' ' ~ } - '  
n -m 

for all X E  (0 ,  1). 

~ o o j  Let gn(x) := [ x ( l  - X ) ] ' ' ~ ~ , ( X )  for n 2 1. Since the functionsf, obey the recursion 

fn+l(X)=a( l  - x ) - ' ~ 2 ~ ( f n { f [ 1 + ( 1 - X ) 1 ' 2 ] } + f n { ~ [ l  - ( l - x ) 1 / 2 ] } )  X E ( 0 , l )  (1) 

g,+l(x)=?i(gn~t[l+(1-x)1'21}+g,{f[l-(1-X)1'2]}) X E ( 0 , l ) .  (2) 

g,(x) = a,l[x < c,] + u,l[x = c,]+ b,l[x > c,] 

it follows that 

Let g, be a step function of the form 

(3) 
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where U, E {a,, b,,}. Then g,+l is also a step function of the form (3), satisfying 

max(a,, b,) 2 max(an+l, bn+l) 2 min(a,+l, b,+l) 2 min(a,, b,) 

and 

l a n + l - ~ n + l l ~ S l ~ n - b , l .  

For example, taking c, > t ,  
g,+l(x)=t(an +b , ) I [x<c ,+~I+t (a ,  + u , ) ~ [ x = ~ n + ~ l + a , ~ [ x > ~ n + ~ I  

where c,,+, = 1 - (2c, - 1)’. Hence it follows that, if go is ofthe form (3), g,,(x) converges 
uniformly in x E (0 , l )  to the constant gm:= limn+m a,. Note that 

since, from ( l ) ,  jAf,(x) dx =jAfo(x) dx for all n. 
Since also, from (2), 

S U P  Ign+l(X)I~ SUP Ig,(x)l 
o<x< 1 O C X < l  

it follows that g, converges uniformly to 1; go(x){.rr[x( 1 -x)]”~}-’ dx whenever go can 
be uniformly approximated by finite linear combinations of simple step functions, a 
class of functions including D[O, 13 (Billingsley 1968, ch 3, lemma 1). Of course, if 
fo is a probability density on (0, I ) ,  jAgo(x){n[x(l -x ) ]~ /~} - ’  dx = n-’. 

An analogous result may also be established for many piecewise expansive Markov 
maps, using more complicated arguments, similar to those in Collet and Eckmann 
(1985), 0 11. The special case of h ( x ) : =  1-21x-fl can then be transformed into 
i ( x )  := 4x( 1 - x)  in the usual way. 
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